The State of Indium Ions in Nitrate Solutions: A Raman Spectroscopic Study

GALINA V. KOZHEVNIKOVA

Department of Chemistry, Leningrad State University, 199004 Leningrad, V.O., Srednii pr. 41143, U.S.S.R.

and GABOR KERESZTURY

Central Research Institute for Chemistry, Hungarian Academy of Sciences, H-l 025 Budapest, Pusztaszeri tit 59167, Hungary

Received October 13, 1983

Abstract

Raman measurements were carried out on aqueous **in the solution is well called out on aqueous** tiques in the Solutions containing unforcing adult $h(x) = \frac{1}{2}h(x) + \frac{1}{2}h(x) + \frac{1}{2}h(x) + \frac{1}{2}h(x) + \frac{1}{2}h(x)$ hydrate $In(NO₃)₃·3H₂O$, and on its melt. Band envelope fitting in the region of In-O stretching vibrations $(350 \text{ to } 550 \text{ cm}^{-1})$ vielded component bands which were assigned to different types of complexes present in the solutions: (i) 485 cm^{-1} : the totally symmetric 'breathing' vibration of $In-O(H₂)$ bonds in hexa-aquo indium cations, $[\ln(H_2O)_6]$ ³⁺; (ii) 406 $\begin{bmatrix} \text{in} \\ \text{in} \\ \text{in} \end{bmatrix}$: Indianal Cations, $\begin{bmatrix} \text{in} \\ \text{in} \\ \text{in} \end{bmatrix}$ an complex of individual or individual (ii) 465 cm $^{-1}$ aquo complex of indium; (iii) 465 and 425 cm⁻¹:
In-O(H₂) vibrations of aquo complexes containing one or more nitrate ions in the first coordination sphere of indium.

Depolarization ratios of the Raman bands in the 1200 to 1550 cm⁻¹ region allowed us to decide whether mono- and bidentate nitrate complexes of indium are formed in some of these systems.

Introduction

Aqueous electrolyte solutions have been studied Aqueous electrolyte solutions have been studied extensively by vibrational spectroscopy, and the main results of these works are reviewed in ref. [1].
Our more recent Raman spectroscopic studies dealt Full more recent Kaman spectroscopic studies dealt mercury and discussion and *interesting complexes* or μ present work is devoted to the study of μ in associated to the study of μ t_{t} and work is devoted to the study of formation in and t_{t} tion and complex formation in aqueous indium
nitrate solutions. α successions.

salt solutions and respect to the Raman spectrum of a 4.2 salt solutions $[5-8]$ the Raman spectrum of a 4.2 M solution of indium nitrate containing a 2 M excess of nitric acid was reported by Hester *et al.* [5]. In the 350 to 550 cm^{-1} region a broad, polarized band was observed and assigned to the symmetric In-O stretching mode of an aquo-indium com-

^aThe concentration of \ln^{3+} is 1 M in all solutions.

plex. The vibrational frequencies of nitrate ion indi- $\frac{1}{2}$ for $\frac{1}{2}$ formation with individual individual with individual $\frac{1}{2}$ for $\frac{1}{2}$ cated complex formation with indium, but the effect of hydrolysis on the spectra has not been discussed in detail, neither in ref. 5 nor in the other papers cited above. Moreover, in these papers no exact values but only approximate frequency intervals (without proper band resolution) were given for the proposed aquo complexes of indium.

The aim of the present work is to determine the Fire all θ and θ and θ and θ more detailed more detailed requencies more precisely and offer more detailed assignments for the In-O stretching bands of hydrated indium complexes, and also to characterize the interaction of indium with the nitrate ion under different circumstances both in solution and in melt.

Experimental

A stock solution of indium nitrate was prepared by dissolving indicate in the new state in the new s $f(x)$ dissolving indium india in mind adid. Analysis or multim and initiate content gave. $\begin{bmatrix} \text{m} \\ \text{m} \end{bmatrix} = 2.44$ of different composition were obtained from the of different composition were obtained from the stock solution by adding aqueous sodium hydroxide, sodium nitrate or nitric acid solutions as given in $\frac{1}{2}$ by proper distribution, the individual concentration, the individual concentration, the individual concentration of $\frac{1}{2}$ radie 1. by proper dilution, the

0 Elsevier Sequoia/Printed in Switzerland

Fig. 1. The Raman spectrum (300–800 cm⁻¹) of indium nitrate solution II: $[NO₃^-]/[In³⁺] = 3.26$, $[NaOH]/[In³⁺] = 0.4$.

 T_1 can crystalline trificial T_2 Fire crystalline triniquiate $\ln(\text{IV3})3^{3}$. $\ln 20$, (III.1) . $62-74$ °C) was obtained by precipitation from a saturated indium nitrate solution containing excess of nitric acid. Γ and Γ is Γ of solutions I to Γ were Γ to Γ were Γ

 $\frac{m}{2}$ in $\frac{m}{2}$ spectra of solutions **1** to **v** wele measured on a Cary 82 spectrometer on-line with a Nicolet 1180 computer $[9]$. The latter was equipped with a magnetic disk unit, digital plotter and display. The 514.5 nm line (at 1600 mW output power) of a Spectra-Physics Model 164 argon ion laser was used for excitation. The observed composite band systems were resolved into symmetric omponent bands by means of an interactive curve analysis program (CAP) based on visual comparison of experimental and calculated band contours. Pure Lorentzian band shapes were used since they gave smaller root-meansquare errors than did Gaussian or mixed functions.

The Raman spectra of the trihydrate were recorded on a Ramanor HG.2S spectrometer equipped with
a Zeiss ILA 122 argon ion laser (514.5 nm line, 240 m 25% argue four fascil (514.5 mm fine, $80, 90, 100, 100, 110, 300$

Results and Discussion

 T_{max} and T_{max} of T_{max} in the five different individual individu nie Kaman specula of all the tive different mutum nitrate solutions studied (solutions I to V ; see Table I for their composition) exhibit bands corresponding of their compositions exhibit bands corresponding o the viorations of free nitrate ions of D_{3h} symmetry at 716 (ν_4 , E'), 1050 (ν_1 , A'₁) and 1420 cm⁻¹ (ν_3 , 51.6 besides, there are ballus hear $1500 - 1550$ and $\frac{1}{2}$. The internal $\frac{1}{2}$. The internal set of $\frac{1}{2}$. The internal set of $\frac{1}{2}$. The internal set of are folls $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

 $\frac{1}{50}$ cm-core points to variate the single to vary in the single state and $\frac{1}{50}$ 550 cm^{-1} region was observed to vary in shape and in the position of its maximum (from 460 to 485 cm^{-1}) depending on the composition of the solution, which indicates overlap of several components in

this band. Also, a well pronounced shoulder appears $\frac{1}{100}$ cm-' in the spectrum of solution in the spectrum $\frac{1}{100}$ $\frac{1}{2}$ is the state of characterize the state and state an (Fig. 1). In order to characterize the state and environment of indium ions in the solutions under investigation, we need to account first for these spectral features. It is also of interest to study the region of $v_4(NO_3)$ around 720 cm⁻¹ which may also contain additional components.

In-O Vibrations: the 350 *to 550 cm-' Region* σ resultions, the 330 to 330 cm α region

I in Fig. 2 as an example. σ_{1} as an example. Similar results, σ_{2} I is shown in Fig. 2 as an example. Similar results, *i.e.* three component bands with varying intensities but nearly the same frequencies, were also obtained for solutions II , III and IV (see Tables II and III).
For an aqueous solution of indium nitrate, the

 $\frac{1}{\sqrt{2}}$ is a symmetric In-O stretching vibration $\frac{1}{\sqrt{2}}$ is $\frac{1}{\sqrt{2}}$ in $\frac{1}{\sqrt{2}}$ $\frac{1}{100}$ or $\frac{1}{100}$ of the heavenly symmetric in-0 stretching violation (or $\frac{1}{100}$ ing') of the hexa-aquo indium cation, $[\text{In}(H_2O)_6]^{3+}$ is expected to have the highest frequency and highest
intensity in this region. Thus, it is straightforward the to assign the 485 cm- σ assign the θ cont Earlier studies on the solutions of a number of

statuer studies on the solutions of a number of ally $\begin{bmatrix} 10 \\ 11 \end{bmatrix}$ have shown that the flew bands appearing in the region of metal-oxygen vibrations upon the addition of base (NaOH) belong to hydroxy complexes. $T_{\rm tot}$ shift on deuteration (vr ℓ = 1.01-1.03)

ineir smit on deuteration $(\nu_H/\nu_D - 1.01 - 1.03)$ is smaller than that of the $In-O(H₂)$ band of the hexa-aquo cations $(1.05-1.07)$. Hence, we assign the 406 cm⁻¹ band (component C) showing such a behaviour to the In-O vibration of a hydroxy complex of indium. This assignment is supported by ref. $[12]$, where it is shown that in aqueous solutions of indium salts at high concentrations an equilibrium is
established between hexa-aquo cations and various p_{1} oolynuclear hydroxy complexes, $\ln_q(OH)_p(H_2-I)$
1^{(3q-p)*} In solutions of indium perchlorate for J/m] \ldots in solutions of multimetric perchanged \ldots

Fig.2. Spectral band resolution for solution I in the region of 300 to 800 cm^{-1} .

TABLE II. Vibrational Frequencies (cm^{-1}) of Different Components in the 300 to 800 cm⁻¹ Region of the Raman Spectra of Solutions I-V.

Component ^a	Solutions of $In(NO3)3$					
		\mathbf{I} (NaOH)	Ш (NaNO ₃)	IV (HNO ₃)	v (HNO ₃ concd.)	
A(p)	485	486	484	482		
B(p)	459	459	459	463	467 425^{b}	
C(P)	406	406	406	402		
D (dp)	716	716	718	717	719	
E(p)	748		748	754	755	
F(p)				689	689	
G (dp)				642	641	

 $a_{\text{Polarization characteristics are shown in parentheses.}}$ b_{Component B' (see text).}

TABLE III. Percentage Contributions of Different Components to the General Integrated Scattering Intensity of In-O Vibrations.

Component	Solutions of $In(NO3)3$					
		п (NaOH)	Ш (NaNO ₃)	IV (HNO ₃)	$(HNO3 \text{ concd.})$	
A	51	43	32	25		
B	39	20	61	73	88 12^{a}	
C	10	37				

^aComponent B' (see text).

Fig. 3. Band resolution for indium nitrate solution V (a) and for an 8.56 M solution of nitric acid (b).

 $(OH)_2$ ⁴⁺ and $[In_4(OH)_6]$ ⁶⁺ as the prevailing forms [13]. In solutions of indium nitrate, however, there might exist other types of hydroxy complexes due to the presence of a complexing ligand $(NO₃$ ⁻ $).$

The remaining third component (B) in this region can be assigned to vibrations of the indium-water bonds affected by the presence of nitrate ions in the complex (presumably $[In(H₂O)₅NO₃]^{2-}$), since this is the dominating component band in the solutions with high nitrate concentration. Note that in large excess of nitric acid (solution V) components A and C disappear from the spectrum, and beside the remaining component B a further component, B', occurs at 425 cm^{-1} . It seems likely that B' is due to indium-water bonds in a different type of association. A further decrease in the $In-O(H₂)$ stretching frequency is consistent with the weakening of this bond brought about by the formation of a second $In^{3+}-NO_3$ bond with the same indium ion (this interpretation is analogous to that proposed by Jarv et *al.* [8] for indium chloride solutions).

Perturbation of the Nitrate Vibrations

a) The 600 to 800 cm-' *Region*

The resolved curves in the region of $\nu_4(NO_3)$ show that in addition to the free nitrate band at 716 cm^{-1} there is a Raman feature near 750 cm^{-1} (component E) in the spectra of all solutions except solution II (see Table II), which indicates complex formation of indium with the nitrate ion $[1]$. This band has **low** intensity (perhaps this is why it could not be observed in the spectrum of solution II), but it should be noted that its contribution to the common band contour increases with increasing nitrate concentration. This behaviour parallels that of component B, thus confirming the assumption that component B can be assigned to the vibration of $In-O(H₂)$ bonds influenced by interaction with nitrate ions in the first coordination sphere of indium.

The components at 689 (F) and 642 cm^{-1} (G) are due to the excess nitric acid, as follows from the comparison of the spectrum of solution V with that of an aqueous nitric acid solution of the same concentration (Fig. 3).

*b) The 1200 to 1550 cm-' Region**

Raman depolarization measurements in this region allow us to judge whether mono- and bidentate nitrate complexes [14, 151, or mixed dinitrate complexes (with two non-equivalent nitrates) [16, 17], are present. For this purpose the depolarization ratios of the component bands were determined. We found (see data in Table IV) that the high frequency band of bonded nitrate ions near 1510 cm^{-1} in the spectra of solutions I, II and V is polarized; consequently, in these systems bidentate $In=O₂NO$ complexes are present. The lower frequency band of bonded $NO₃⁻$ ions near 1310 cm⁻¹ appears to be completely polarized in solutions I and II. From this we can conclude that in addition to bidentate complexes, monodentate In-ONO₂ complexes are also present in these solutions. The spectrum of solution V is a mixture of the spectral features of an 8.56 M solution of nitric acid and those of solution I. Although the band at 1304 cm⁻¹ (ρ = 0.15) could not be resolved

^{*}The 800 to 1200 cm^{-1} region has not been analysed in this work since it appeared to be less informative for our purposes.

	п		Approximate Assignment
		1270 (0.10)	HNO ₃
1307(0)	1310(0)	$1304^a(0.15)$	Complexed nitrate
1337(0.65)	1342(0.68)	1333 (0.38)	$\nu_3(E')$, free nitrate
1412(0.70)	1412(0.65)	1436 (0.78)	
1510(0.47)	1518(0.55)	1517 (0.44)	Complexed nitrate

TABLE IV. Frequencies and Depolarization Ratios (in parentheses) of Raman Bands of $In(NO₃)₃$ Solutions I, II and V in the 1200 to 1550 cm $^{-1}$ Region.

^aThis band of the complex overlaps with the NOH bending band of undissociated nitric acid molecules.

Fig. 4. Band resolution for an 8.56 M nitric acid solution in the 1200 to 1550 cm^{-1} region.

sist of two close-lying components of similar band in the melt is also shown by the substantial decrease width: the band of undissociated nitric acid [18] of scattering intensity in the region of $\nu_3(E')$ vibrawith $\rho = 0.11$ and the band of the bonded nitrate tion of free nitrate ions (virtually no bands are

ion. Due to this overlap the polarization behaviour of the latter cannot be ascertained.

Raman Spectra of the Crystalline Hydrate, $In(NO₃)₃$ 3H₂ O, and its Melt

The Raman spectra of indium nitrate trihydrate recorded at different temperatures bear close resemblance with the spectra of the solutions: they exhibit the spectral features of free and bonded nitrate ions and those of $In-O(H₂)$ vibrations (Fig. 5, Table V). A peculiar feature is that the Raman band of the In-0N02 stretching mode (assigned by Hester and Grossman $[7]$) observed in the melt at 290 cm^{-1} is much stronger than that of either the solid trihydrate or the solutions (where it is hardly seen). This can be regarded as an evidence for the increase in covalent character of the bond between In^{3+} and $NO₃⁻$ ions in the melt.

further by curve analysis, we know that it may con-
The strengthening of the process of complexation

TABLE V. The Raman Bands (cm⁻¹) of Polycrystalline In(NO₃)₃ \cdot 3H₂O and its Melt.

Solid ($t = 25^{\circ}$ C)	Melt $(t = 80 - 110^{\circ}C)^{a}$	Assignment
725	720(dp)	$\nu_4(E')$, free nitrate
1060	1050(p)	$\nu_1(A_1)$, free nitrate
1335	?	
1425	?	$\nu_3(E')$, free nitrate
1615	1610(p)	$2\nu_2(A''_2)$ free nitrate
760	750(p)	complexed nitrate
	770(p)	complexed nitrate
1030	1030(p)	complexed nitrate
1305	1310(p)	complexed nitrate
1515	1520 $(?, \rho = 0.61)$	complexed nitrate
455	465 (p, $\rho = 0$)	$In-OH2$
$270 - 290$	290 (p, $\rho = 0$)	$In-ONO2$

^aThe spectrum of the molten hydrate remains unchanged in this temperature interval.

Fig. 5. The Raman spectra of polycrystalline indium nitrate trihydrate, $In(NO₃)₃·3H₂O$ (t = 25 °C), and of its melt (t = 80 °C). The spectrum of the molten sample, in parts (b) and (c), is shown at three-fold ordinate expansion with respect to (a).

present near 1335 and 1425 cm^{-1}). In the spectra of the melt the band due to the coordinated nitrate ions (750 cm^{-1}) is stronger than that of the free nitrate ions (720 cm^{-1}) . This pattern is exactly the reverse of that observed for solutions or for the crystalline sample. In addition, a shoulder appears near 770 cm^{-1} in the spectrum of the melt which, by the analogy with complexation in zinc nitrate [19], could be assigned to dinitrate complexes.

The polarized character of the 1310 cm^{-1} Raman line gives evidence of the formation of monodentate nitrate complexes in the melt. The 1520 cm^{-1} band has an intermediate depolarization ratio (0.6 l), and is thus inconclusive regarding the presence or absence of bidentate complexes.

Conclusion

The above analysis has helped us to distinguish between several indium-containing species formed under different circumstances, and allowed us to assign their characteristic Raman bands.

Acknowledgements

One of the authors (G. V. K.) is indebted to Professor B. Csakvari for providing the opportunity and facilities to carry out parts of this work at the Department of General and Inorganic Chemistry, Eötvös Lorand University, Budapest. The authors express their gratitude to Dr. M. Gal (of the same department) for the measurements on Ramanor HG.2S.

References

- D. E. Irish and M. H. Brooker, in 'Advances in Infrared and Raman Spectroscopy', in R. J. H. Clark and R. E. Hester (Eds.), Vol. 2, p. 212, Heyden, London, 1976.
- L. A. Myund, G. V. Kozhevnikova, L. V. Chernykh and K. A. Burkov, *Vestn. Leningr. Univ., Fiz. Khim., 16, 67* (1978).
- 3 K. A. Burkov, G. V. Kozhevnikova, L. S. Lilich and L. A. Myund, *Koord. Khim., 5, 1328* (1979).
- K. A. Burkov, G. V. Kozhevnikova, L. S. Lilich and L. A. Myund,Zh. Neorg. *Khim., 27, 1427* (1982).
- R. E. Hester, R. A. Plane and G. A. Walrafen, J. *Chem. Phys., 38, 249* (1963).
- R. E. Hester and R. A. Plane, Znorg. *Chem., 3, 768 (1964);ibid., 3, 769* (1964).
- R. E. Hester and W. E. L. Grossman, *Spectrochim. Acta, Part A:, 23,* 1945 (1967).
- T. Jarv, J. T. Bulmer and D. E. Irish,J. *Phys. Chem., 81, 649* (1967).
- G. Jalsovszky, S. Holly and G. Keresztury, *J. Mol. Structure, 115, 275* (1984).
- 10 G. V. Kozhevnikova, C. Sc. Thesis, Leningr. Univ., 1980.
- S. I. Ishiguro, M. Maeda, S. Ono and H. Kakihara, *Denki Kagaku, 46, 553* (1978).
- 12 C. F. Baes, Jr. and R. E. Mesmer, in 'The Hydrolysis of Cations', pp. 319-427, Wiley, New York, 1976.
- *13 G.* Biedermann and D. Ferri, *Actu Chem. &and., A36, 6.* Biederma $611 (1982).$
- *B.* Taravel, G. Chauvet, P. Quintard and P. De Compt. Rend. Acad. Sci. (Paris), 273B, 85 (1971).
- 1. Brin R. E. Hester and W. E. Grossman, *ibid., 5, 1308* (1966).
	-
-). L. N 17 B. G. Oliver and A. R. Davies, J. Znorg. *Nucl. Chem., 34,*
- 8*.* G. Oliver a 18 G. E. McGraw, D. L. Bernitt and I. C. Hisatsune, J. *Chem.*
- *J. E. McGraw, D. L. Be* Phys., 42, 237 (1965).
-